Ders AdıKodu Yerel KrediAKTS Ders (saat/hafta)Uygulama (saat/hafta)Laboratuar (saat/hafta)
Görüntü AnaliziHRT413123200
ÖnkoşullarYok
YarıyılBahar
Dersin DiliTürkçe
Dersin SeviyesiLisans
Dersin TürüSeçmeli @ Harita Mühendisliği Lisans Programı (%30 İngilizce)
Ders KategorisiTemel Meslek Dersleri
Dersin Veriliş ŞekliYüz yüze
Dersi Sunan Akademik BirimHarita Mühendisliği Bölümü
Dersin KoordinatörüUĞUR ACAR
Dersi Veren(ler)UĞUR ACAR
Asistan(lar)ıONUR CAN BAYRAK
Dersin AmacıGörüntüden bilgi çıkarımı konusunda kullanılan yöntem ve yeni yaklaşımların aktarılmasıdır.
Dersin İçeriğiGörüntü topolojisi, bölütleme, özellik çıkarma, doku analizi, obje yakalama, obje-temelli sınıflandırma, görüntü analizinde bulanık mantık ve yapay sinir ağlarının uygulanması
Ders Kitabı / Malzemesi / Önerilen Kaynaklar
  • W.E. Grimson, Object Recognition by Computer: The Role of Geometric Constraints, MIT Press, 1990.
  • D. Forsyth and J. Ponce, “Computer Vision: A Modern Approach”, Prentice Hall, Englewood Cliffs,NY, 2011
  • E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", Prentice Hall, 1998.
  • I. Pitas, "Digital Image Processing Algorithms", Prentice Hall, 1993.
  • R.C.Gonzales, R.E.Woods, "Digital Image Processing ", Prentice Hall, 2002.
  • R. Haralik, L. Shapiro, "Computer and Robot Vision", Addison Wesley, 1993.
  • Richard O. Duda, Peter E. Hart , David G . Stork, "Pattern Clasification", John Wiley and Sons, 2001
  • Y. Shirai, "Three-dimensional Computer vision", Springer-Verlag, 1987.
  • Feature Extraction & Image Processing for Computer Vision , M. Nixon, A.S. Aguado, 2012
  • Digital Image Processing, R.C.Gonzales, R.E.Woods, 2008.
  • Bernd Jähne, Digital Image Processing, Springer-Verlag Berlin Heidelberg 2005
  • William K. Pratt , Digital Image Processing: PIKS Inside, John Wiley & Sons, Inc. 2002
  • John C. Russ, The Image Processıng Handbook, Taylor & Francis Group, 2007
Opsiyonel Program BileşenleriYok

Ders Öğrenim Çıktıları

  1. Görüntü bölütleme probleminin çözümü için en uygun yöntemi tanımlar. (PÇ 2.1)
  2. Hangi görüntü bölütleme yönteminin hangi problemde kullanılabileceğini saptar.(PÇ 2.1)
  3. Görüntü filtreleme yöntemlerini obje yakalama/çıkartma probleminin çözümünde uygular. (PÇ 2.1)
  4. Görüntü bölütleme problemlerinin çözümü için bölütleme yöntemlerini karşılaştırır.(PÇ 2.1)
  5. Görüntü basitleştirme problemlerinin çözümü için çözüm önerir.(PÇ 2.1)
  6. Görüntü işleme probleminin çözümü için iş akış sürecini tanımlar.(PÇ 2.1)
  7. Etkin rapor yazar ve yazılı raporları anlar, tasarım ve üretim raporları hazırlayabilir.(PÇ 7.1)

Ders Öğrenim Çıktısı & Program Çıktısı Matrisi

DÖÇ-1DÖÇ-2DÖÇ-3DÖÇ-4DÖÇ-5DÖÇ-6DÖÇ-7
PÇ-1-------
PÇ-2-------
PÇ-3-------
PÇ-4-------
PÇ-5-------
PÇ-6555555-
PÇ-7-------
PÇ-8-------
PÇ-9-------
PÇ-10-------
PÇ-11-------
PÇ-12-------
PÇ-13-------
PÇ-14-------
PÇ-15-------
PÇ-16-------
PÇ-17-------
PÇ-18-------
PÇ-19-------
PÇ-20-------
PÇ-21-------
PÇ-22-------
PÇ-23-------
PÇ-24------5
PÇ-25-------
PÇ-26-------
PÇ-27-------
PÇ-28-------
PÇ-29-------
PÇ-30-------

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

HaftaKonularÖn Hazırlık
1Görüntü topolojisi Ders materyali
2Mean-shift bölütlemeDers materyali
3Simple iterative linear clustering yöntemiDers materyali
4Particle Swarm optimizasyon yöntemiDers materyali
5Random Forest yöntemiDers materyali
6K-Means, C-Means yöntemiDers materyali
7Support Vector Machine yöntemiDers materyali
8Ara Sınav 1
9Yapay Sinir AğlarıDers materyali
10Yapay Sinir AğlarıDers materyali
11Doku analiziDers materyali
12Doku analiziDers materyali
13Görüntü işlemede bulanık mantıkDers materyali
14Görüntü işlemede bulanık mantıkDers materyali
15Konu Tekrarı ve UygulamalarıN/A
16Final

Değerlendirme Sistemi

EtkinliklerSayıKatkı Payı
Devam/Katılım00
Laboratuar00
Uygulama00
Arazi Çalışması00
Derse Özgü Staj00
Küçük Sınavlar/Stüdyo Kritiği00
Ödev130
Sunum/Jüri
Projeler00
Seminer/Workshop00
Ara Sınavlar130
Final140
Dönem İçi Çalışmaların Başarı Notuna Katkısı
Final Sınavının Başarı Notuna Katkısı
TOPLAM100

AKTS İşyükü Tablosu

EtkinliklerSayıSüresi (Saat)Toplam İşyükü
Ders Saati142
Laboratuar
Uygulama
Arazi Çalışması
Sınıf Dışı Ders Çalışması142
Derse Özgü Staj
Ödev110
Küçük Sınavlar/Stüdyo Kritiği
Projeler
Sunum / Seminer00
Ara Sınavlar (Sınav Süresi + Sınav Hazırlık Süresi)110
Final (Sınav Süresi + Sınav Hazırlık Süresi)17
Toplam İşyükü :
Toplam İşyükü / 30(s) :
AKTS Kredisi :
Diğer NotlarYok